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Abstract

This paper discusses theoretical foundations of
quantitative image-based measurcments for extracting and
reconstructing  geometric,  Kinematic and dynamic
properties of observed objects. New results are obtained
by using a combination of methods in perspective
geometry, differential geometry, radiometry, kinematics
and dynamics.  Specific topics include perspective
projection transformation, perspective developable conical
surface, perspective projection under surface constraint,
perspective invariants, the point correspondence problem,
motion fields of curves and surfaces, and motion cquations
of image intensity. The methods given in this paper ar¢
useful for determining morphology and motion fields of
deformable bodies such as elastic bodies. viscoclastic
mediums and fluids.
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1. Introduction

Image-based  measurcment  techniques play an
increasingly important role in virtually all natural sciences
and engineering disciplines since they can provide
tremendous information and knowledge about observed
objects in a global, non-contact way with high temporal
and spatial resolution. Specialists in photogrammetry,
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computer vision. and other scientific and engineering
disciplines have developed various methods that are best
suitable to particular applications in their fields. In
particular, both photogrammetrists and computer vision
scientists have studied image-based techniques for many
years 1o obtain metric and geometric information. The
approaches developed by photogrammetrists are more
mature and quantitative, which are recently extended 10
non-topographic applications [1]. By contrast. in order to
deal with more complicated vision problems related to
artificial intelligence, computer scientists tend to adopt
more versatile mathematical approaches in perspective
geometry, differential geometry and image algebra [2-5].
However, the approaches used by computer vision
scientists are of qualitative nature in many cases and
generally less accurate than those used in photogrammetry
in metric measurements.  Because the objectives of
different disciplines are very different, there is a lack of
cufficient interaction among specialists in various technical
communities. Perhaps due to different notations. jargons
and methodologies in these communities, it is difficult to
transcend the different technical domains and see a unified
scope of various image techniques.

From a methodological standpoint. the approaches in
photogrammetry and computer vision should be integrated
into a universal theorctical framework.  Furthermore,
unlike computer vision scientists who mainly study rigid
bodies. aerospace engineers and scientists often deal with
complex morphology and motion ficlds of deformable
bodies such as elastic bodies, viscoelastic mediums and

fluids. It is highly desirable to formulate universal
theoretical foundations for quantitative image-based

measurements of morphology and motion fields of
deformable bodies. In this paper, we will focus on the
geometric, kinematic and radiometric aspects of image-
based measurements. First, we will provide a unified
treatment of the perspective projection transformation
from the 3D object space to the 2D image plane and
illustrate ~ geometric ~ connections — among different

‘formulations of the perspective projection transformation.

Then, we will discusses some specific problems for
recovering geometry and motion, such as projective
developable conical surface, projection under surface
constraint, reconstruction of motion field on a surface and
motion field of a 3D curve, the correspondence problem.
and projective invariants. This is an area for combined
application of approaches in perspective  geometry,
differential geometry. kinematics and dynamics. In the



radiometric aspect, we will discuss the fundamental
relationship between the image intensity and radiance from
an object. Based on this relation and imposed physical
constraints, the motion equations of image intensity will be
derived for typical physical processes such as moving

Lamertian surface, emitting passive scalar transport, and

transmitting passive scalar transport.  These equations
provide a rational way for reconstructing the geometric
and kinematic properties of deformable bodies like fluids.
In general, the geometric, kinematic and radiometric
approaches are closely coupled.

2. Perspective Projection Transformation from 3D
Space to 2D Image

Image-based measurement techniques extract data
from 2D images and then map them into the 3D object
space. There is a perspective relationship between the 3D
coordinates in the object space and the corresponding 2D
coordinates in the image plane [1. 6-8]. Here, we discuss
several formulations of the perspective projection
transformation. Although these formulations are
equivalent, one may be more convenient to use than others
for a specific problem. The fundamental geometric
problem in image-based measurements is to determine the
object space coordinates X =( X', X, X" )" given the
corresponding image (retinal) coordinates x =(x’ x° J7.
Figure 1 illustrates the camera imaging process. The lens
of the camera is modeled by a single point known as the
perspective center (or the optical center), the location of
X, =(X/ X, x).
Likewise, the orientation of the camera is characterized by
three Euler orientation angles. The orientation angles and
location of the perspective center are referred to as the
exterior orientation parameters. The object space point.
perspective center and image point lie along a straight line
tor a “perfect” camera. This relationship is described by
the collinearity equations, the fundamental equations of
photogrammetry.  On the other hand. the relationship
between the perspective center and the image coordinate
system is defined by the camera interior orientation
parameters, namely, the camera principal distance ¢ and
the photogrammetric principal-point location
The principal distance ¢, which equals

which in the object space is

x,=(x,. v ).
the camera focal length for a camera focused at infinity, is
the perpendicular distance from the perspective center to
the image plane, whercas the photogrammetric principal-
point is where a perpendicular line from the perspective
center intersects the image plane. Due to the lens
distortion. however, perturbations to the imaging process
lead to departures from collinearity that can be represented

by the shifts dx' and §x° of the image point from its
y p

“ideal” position on the image plane. The shifts §x' and

Ox’ are modeled and characterized by a number of the
lens distortion parameters.

The image and object space coordinates of the points
are related by the collinearity condition in which the image
vector 1s aligned with the vector from the perspective
center to the object space point

x—xl +6x! X' -Xx!
W-xo 407 =AM X - X7 (2.1)
-c Xi-Xx!

where M ={[m, | is the rotation matrix, 4 is a scaling

factor. Algebraic manipulation of Eq. (2.1) yields the
well-known collinearity equations (with the distortion

terms dx’' and &x”) relating the point in the 3D object

space to the corresponding point on the image plane,
m(X-x,)_ X'

—-c—

Xl —xp+8x = e —L —
m, (X-X,) X

i SO X
2 2 5 2 X _X )
xXT—x,+0x° =—CL’(—*()=—CK—‘
m; (X-X_) X

where  the  vectors  m,=(m,,m,,m,, )’  and

m, =(m,,.my.m,, )" are the directional cosine vectors
along the x'-axis, x’-axis in the image plane, respectively.
The vector m, =(m,, .m,,.m, )" is normal to the image
plane, directing from the principal point to the optical
center on the optical axis. As shown in Fig. 1, the unit
orthogonal vectors m,, m,, and m, constitute an object

space coordinate frame at the optical center X, and

— =1 =3
X =(X X .X )" are the projections of the object space
position vector X — X in this frame. The elements of the

rotation matrix my (i, j = 1, 2, 3) are functions of the Euler
orientation angles ( w.g.x ),

m;; =cos@ CosK, m,, = SiNW siNg cosK + cosw sinkx,
m,, = —Cos@sing cosK + sinw sink, m,, =~cose sink.,
m,, =—Sinw sing sink + cosw cosx,

L, = Cosw Sing Sink + sinw cosk,

my, =Sing. ni, =-$inwcosy, m,, =cosw cosg.

(2.3)
The orientation angles (w.@.x ) are essentially the pitch,

yaw, and roll angles of the camera in the established
coordinate system in the object space. The rotational
matrix M is an orthogonal matrix having the property of
M7 =M" o m'm,=5,  The scaling factor
/1=—c/m3T(X-X(_) is a ratio between the principal

distance and the projected component of the object space
position vector X — X, on the optical axis in -m,



direction. When an object space point X is on the focal
planc ij( X —XC )=0, the scaling factor becomes
infinite. i.e.. A =oa. which corresponds 1o the points at
infinity on the image (retinal) plane.

The terms dx' and J8x° in Eq. (2.2) are the image
coordinate shifts induced by the lens distortion. The lens
distortion terms can be modeled by the sum of the radial
distortion and decentering distortion [9-10]

Sx'=8x' +8x) and 6x7=6x] +6x]. (2.4)
where, assuming that the optical axis of the lens is
perpendicular to the image plane, we have
Sxl =K (x"=xL )t + K (x""=x, )i
Sxl=K,(x-x)ri + K.(x—x; )r
Sx, =P [r+2x""=x) ) |+ 2Py e e

Sx2=P[ri+2(x7=x; ) [+ 2P( =) =x)

r

),

Ap

Ya

(2.5)

Here. K; and K- are the radial distortion parameters, P, and
P, are the decentering distortion parameters, and x'" and

= I L2202
re=(x=x, ) (X —X, ).

%' are the undistorted coordinates in image. When the

lens distortion is small, the unknown undistorted
coordinates can be approximated by the known distorted

" and x? =x7. For large lens

coordinates, ie., x'"=x
distortion. an iterative procedure is employed to determine
the appropriate undistorted coordinates to improve the

accuracy of the estimate. The following iterative relations

are used: (x" ) =x and (x3 ) =x",
(XD = xS (XTI ] and
(x2 P = o [(x P uxT N where the

superscripted iteration index k is k=0,1,2---.

The collinearity equations Eq. (2.2) can be re-written
in the homogenous coordinates in the image plane
x, =(x! 7 = )T

Ax, =AM(X-X_)or x,=AP(X-X_). (2.6)
where P=[p, /=AM and A=/[a,] isdcfined as

I 0 —x,+6x

A=|0 | —x,+d8x (2.7)
0 0 -
The terse tensor form of Eq. (2.6) s

a,x;, = Am (X' — X/), where the Einstein convention
for summation is used. The matrix-form and tensor-form
of the collinearily equations are sometimes convenient for
mathematical manipulation. Another alternative form of
the collinearity equations in the homogenous coordinates is

x,=AP,X,, (2.8)

X,=(X'".x2.x'1) is the
coordinates in the object space, and P,=A~'M, and
M,=(M -MX_) arc 3x4 matrices. Although Egs.
(2.6) and (2.8) are formally written as a linear relation
between x, and X or X,, they are essentially non-

where homogenous

linear because not only the lens distortion is a non-lincar
function of x. but also the scaling factor

A =—c/m3T( X- Xr ) is not a constant in general.

Nevertheless, because the lens distortion is usually small,
its effect can be corrected by using an iterative scheme.
Hence, Eqs. (2.6) and (2.8) can be treated as a quasi-linear
system at each iteration. Without the lens distortion. the
collinearity equations describe the ideal perspective
projection. Eq. (2.8) is particularly suitable for utilizing
useful results of classical perspective geometry to
construct projective geometric invariants.

Furthermore, Eq. (2.2) can be re-written as a form
suitable to least-squares estimation for the object space
coordinates X ,

W, (X-X,)=0

; . (2.9)
Wz { X - X(. )—_— 0
where W, and W, are defined as
W, =(x' —x,+8x Jm, +cm,
’ (2.10)

W, =(x—x,+8x" Jm; +cm,
As shown in Fig. 2. the vector W, is on the plane spanned
by the orthogonal unit vectors m, and m, while W, is

on a plane spanned by m, and m;. Geometrically

speaking, W,T(X—X( )=0 and WZT(X—X[ )=0
describe two planes normal to W, and W, through the

optical center. Thus, Eq. (2.9) defines an intersection of
these two planes, which is a line through the optical center

X, . For a given image point x =(x' x* )", Eq. (29) is
not sufficient to determine a point in the object space with
the X=(X"xX.xX").
Hence, extra equations associated with additional cameras
and other geometrical constraints should be added for
seeking a unique least squares solution of X . In contrast
to Eq. (2.8). Eq. (2.9) does not include the scaling factor
A.

The collinearity equations Eq. (2.2) contain the
camera parameters to be determined by geometric camera

The parameter scts (@,0.x.X . X7.X]),

three unknown coordinates

calibration.

(c.x!.x2), and (K, K, P.P,) in Eq (2.2) are the

o
exterior orientation, interior orientation, and lens distortion
parameters of a camera. respectively. Geometric camera
calibration is a key problem in quantitative image-based
measurements and a specific topic in both photogrammetry



and computer vision. Here we only bricfly address this
issuec and readers can find the technical details of
geometric camera calibration from references. In this
paper, we generally assume that the camera is calibrated
and a complete set of the orientation parameters and lens
distortion parameters of the camera

(w.¢.x X' XX .cx).x) K, K, P.P,) s
Analytical camera calibration techniques utilize the
collinearity equations and distortion terms to determine
these camera parameters [6-8].  Since Eq. (2.2) is non-
linear, iterative methods of least squares estimation have
been used as a standard technique for the solution of the
collinearity equations in photogrammetry.  However.
direct recovery of the interior orientation parameters could
be problematic and unstable since the normal-equation-
mairix of the least squares problem is nearly singular. The
singularity of the normal-equation-matrix mainly results
from strong correlation between the exterior and interior
orientation parameters. In order 1o reduce the correlation
between these parameters and enhance the determinability

of (cx,.v, ). Fraser |9, 11] suggested the use of multiple

known.

camera stations, varying image scales, different camera
roll angles and a well-distributed 1target field in three
dimensions. Nevertheless, the multiple-station, multiple-
image method for camera calibration is not easy to use in
many engineering and scientific applications like wind
tunnel testing where optical access for cameras is limited
and the positions of cameras are fixed. Abdel-Aziz and
Karara {12] proposed a simple linecar method for camera
calibration, Direct Linear Transformation (DLT).
Scientists in computer vision and robotics have developed
various camera calibration schemes to achieve a fast
calibration with an acceptable accuracy (a lower accuracy
for a photogrammetric application).  Tsai’s two-step
method [13] is representative in computer vision, which
uses a radial alignment constraint to obtain a linear least
squares solution for a subset of the calibration parameters,
whereas the rest of the parameters including the radial
distortion parameter are estimated by an iterative scheme.
By circumventing the singularity problem, Liu et al. [14]
developed a robust optimization method for single-image,
automatic camera calibration to determine the interior and
exterior orientation parameters and lens distortion
parameters plus the pixel spacing ratio.

3. Projective Developable Conical Surface Containing
3D Curve

In this section, we introduce the concept of projective
developable conical surface and show how (o reconstruct
this surface containing a 3D curve from a single image. In
principle. a 3D curve in the object space cannot be
completely recovered from a  single image since
information in one dimension is lost in the imaging
process,  Nevertheless, using a calibrated camera, a
projective conical developable surface on which a 3D

curve lies can be reconstructed. When two calibrated
cameras are used. the 3D curve can be uniquely
determined as an intersection of two different projective
conical developable surfaces. Furthermore, a 3D surface
can be reconstructed as an envelope of a family of the
projective developable conical surfaces obtained from
images taken at different viewing angles. The motion field
of the 3D curve can be obtained from a time sequence of
the curve.
Generating Projective Developable Conical Surfuce
Consider a 3D simple curve C in the object space, and
its projection to the image plane and a plane P normal to
the optical axis (parallel to the image plane), as shown Fig.
3. The collinearity equations Eq. (2.6) are written as
X-X.=4A"Px,, (3.1
where P=P7=[p |=M7'A=M"A. When the
camera parameters and the scaling factor are constant and
the lens distortion is fixed, differentiating Eq. (3.1) yields
dX =A"Psydx, (3.2)

where dX =(dX' dX".dX* ). dx =(dx’ .dx* )7 . and

Py P
Ps=|p,, P2
Py P

A constraint imposed on Eq. (3.2) is mJTdX =0,
indicating that Eq. (3.2) actually describes the projection
Cp of the 3D curve C on the plane P orthogonal to the
optical axis direction or m, . This constraint is equivalent

to the constancy condition of the scaling factor
A=-c/m," (X - X.) since the differential
di=cm,dX /im, (X -X_ )] shows
m,dX =0 di=0. In fact, the constraint
A=-c/m, (X-X,)=const. defines the plane

orthogonal to the optical axis direction or m,. As shown
in Fig. 3, the projected curve Cp on the plane P can be
reconstructed from the image and then the developable
conical surface D containing the 3D curve C can be
generated.
The arc length clement of the projected curve Cp on
the plane P is
dSe, =1dX 1= A" Pautlds, 3.3)

where ¢ =dx/ds and ds =ldx | are the unit tangent vector

and arc length element of the image of the 3D curve Cin
the image plane, respectively.  Thus, the unit tangent
vector of the projected curve Cp on the plane P is

_ dX Pt . (3.4)

(IS(‘,, - l;’-_i: tl

T, p



Note that the unit tangent vector T, is independent of the

scaling factor 4. The curvature vector of the projected
curve Cp on the plane P can be obtained by differentiating
Eq. (3.4) with respect to the arc length S,

are, A = dIPt]

S o L (Pok-T, ).
dSe, IPsutl ‘

(3.5
k ds )

K¢ N

where k =dt/ds =d”x/ds’ is the curvature vector of the
curve image in the image plane. The curvature vector k
can be expressed as k =x.n, where x, and n=k/1k|

are the curvature and the unit normal vector of the curve
image in the image plane. respectively. Furthermore, we
prove

d|F3:t|_(_ﬁ,egk)T(-I_)f:t)

— (3.6)
ds [Pt
Hence, Eq. (3.5) becomes
KA = Pon) (P
Cl:—_-‘—;[Pjgn—T(.,_-(-—’L-'z_L(—j't—)/. (3.7)
PPl I[Pt

The curvature of the projected curve Cp on the plane P is
ke, =K¢, *N¢, . where N¢, =K¢, /1K¢, 1 is the
principal normal vector of the projected curve Cp. Thus,
the ratio between the curvatures &, on the plane P and
Kk, on the image planc is

Ke, A 7

(—I;}J n )T(F,¢2 t) ]
K, |F}_’t|2

= N
[Pt

ph—Ic, Cp -

(3.8)
Clearly, Eq. (3.8) indicates that «, /K, is proportional to

the scaling factor 4.
After the unit tangent vector T, is obtained from the

image. the projected curve Cp on the plane P is readily
reconstructed by

Xc,. = Xc,m + j
f

The initial position X, on the projected curve Cp, in the

Sep
T, (S, JdSe, .

)

3.9

object space is often chosen at the end point of the curve.
Eq. (3. XCI,,,—Xcz/?."Px,,,,.

x,, =(x).x;.1)" is the homogenous coordinates of the

gives where

corresponding image point to X . Substituting Egs.

(3.3) and (3.4) into Eq. (3.9) yields a ray vector directing

from the optical center X, to a point X, on the
projected curve Cp
X, X, =ﬂ"(Fx,,,,+J‘ Potds).  (3.10)
4

A family of the projective rays through the optical center
X, given by Eq. (3.10) generates a projective developable
conical surface D that contains the 3D curve C. The

tangent plane on the developable conical surface D is
given by
(X-X,)eNpy(s)=0, (3.11)
where Np(s)=T¢, X(X¢, =X )/ 1T, X( Xe, =X )
is the unit normal vector to the tangent plane on the
developable surface. which is independent of the scaling
factor. Eq. (3.11) describes a single-parameter family of
the tangent planes where the parameter is the arc length s
of the curve in the image plane. The projective conical
developable surface, the envelope generated by the family
of the tangent planes, is given by a system of Eq. (3.11)
and Eq. (3.12) [15]
(X-X_)edNy(s)/ds=0. (3.12)
Thus. the projective developable conical surface and
associated geometric quantities such as the curvature,
tangent vector and normal vector in the 3D object space
can be obtained by using measured image quantities given
the camera parameters.
Reconstructing 3D curve and Surface
From a single image. we are able to reconstruct the
projective conical developable surface containing the 3D
curve C rather than the 3D curve itself. Nevertheless,
when two calibrated cameras are used, as shown in Fig. 4,
the 3D curve C can be uniquely determined by intersecting
the two projective developable conical surfaces associated
with the different cameras. Interestingly, the developable
conical surface intersection method for determining the 3D
curve only requires knowing the correspondence of one
distinguished point such as an end point of the curve.
Furthermore, the developable conical surfaces can be
used to reconstruct a 3D surface in the object space. As
shown in Fig. 5. the developable conical surface
containing the contour of the 3D surface can be
constructed. Here the contour is a set of points on the 3D
surface at which the surface normal is also the normal of
the developable conical surface. When the camcera is
moved to a number of known positions through a
rotational and translational transformation (rigid-body
motion), a family of the developable conical surfaces can
be obtained. The 3D surface is generated as an envelope
of the family of the conical surfaces. Instead of moving
the camera, the 3D surface can be rotated around a fixed
axis such that a family of the conical surfaces can be
obtained using a camera at a fixed position and viewing
angle. From a computational viewpoint, this method may
not be the most efficient since the intersection and
envelope of the developable conical surfaces has to be
determined.  However, this method is to great extent
immune from the ambiguous correspondence problem in
stercovision.
Recovering Motion Field of 3D Curve
After two or more 3D curves in the object space at
successive instants are reconstructed, we can estimate the
motion field U( X ) of the 3D curve that is defined as




dr

The curve 1s given by X = X[S8(r).t]. where ¢ is time

(3.13)

and S(+) is the arc length of the curve in the object space.
Measurements give the temporal and spatial difference
between two curves at two successive instants /, and t,
(the time interval Ar =1, —1, is small)

A X =X[S(t, )t, [ =X[S(t,)1,]. (3.14)
Reconstruction of the motion field of the 3D curve from
A, X is a non-trivial problem since the point
correspondence  between two sequential images is not
known without using distinct targets on the curve
especially for an elastic curve experiencing large and
complicated deformation.

The motion field of the curve is constrained by the
underlying physical mechanisms behind the motion and
deformation of the curve. In general, reconstructing the
motion field is formulated as an optimization problem of
the functional

JHU(X )] =114, X —U( X )At 1) = min

subject to relevant physical and geometric constraints

GlUX)]=0, (i=12--) (3.16)
and the suitable boundary conditions.  Without the
sufficient constraints, the solution to the optimization
problem may not be unique. Also, the imposed physical
constraints serve as a bridge connecting image-based
measurements with the physical quantities in a specific
problem being studied.

In the simplest case in which the curve is rigid. the
rigid-body motion field is expressed as

UrxX)=U,+2,x(X-X,), (3.17)
where U, and 2, are the constant translation velocity

(3.15)

and angular velocity, respectively, and X, is the rotational
center of the curve. Because U, and €2, together contain
only six unknown constants. it is easier to solve the
optimization problem. A slightly complicated case is that
the curve is stretched in three fixed directions in addition
to the constant translation and rotation. In this case, three
stretching constants are added, and thus the total number
of the unknowns in the optimization problem is nine.
Next. we consider a highly deformable material line
convected in an incompressible and irrotational flow. In
this case, the physical constraints are the solenoidal and
irrotational conditions [ 16}

VelU(X}=0 and VxU(X )=0. (3.18)
A vortex-filament in an incompressible and irrotational
flow is an interesting example since the filament driven by
not only mean flow, but also self-induction is no longer
passive and the motion field is directly related to the
geometric features of the filament. In this case, the
induced motion velocity of the filament is proportional to

the curvature XK of the filament along the binormal
direction vector B [17]

U(X )<«xB. (3.19)
Overall, the physical constraints for a specific application
are necessary for recovering the correct motion field and
associated physical properties of the 3D curve.

4. Perspective Projection under Surface Constraint
In general, mapping between a point in the 3D object
space and the corresponding image point is not one-to-one.,
Nevertheless, as shown in Fig. 6. under a given surface
constraint, a point on the surface has the one-to-one
correspondence to the image point.  In this section, we
discuss the geometric relationship between the surface in
the object space and the image plane. This topic is closely
related 1o some applications in experimental fluid
mechanics and aerodynamics such as reconstruction of
complex flow topology from images of surface oil
visualization  and  laser-sheet-induced  fluorescence
visualization. Consider a surface in the object space given
by
X'=F(X' X"). 4.h)
When Eq. (4.1) 1s imposed on Eq. (2.9) as a surface
constraint, the perspective projection transformation Eq.
(2.9) is reduced 10
(W, W =W, W, D Hw LW, =, )X 8
=w, W, X -w, W, X
wo X +w, X +w FXU X2 )= WX (4.2)
where w, (i=1/2 and j=1.23) are the elements of the
vectors W, =(w,.w,,, v, )" and W, =(w,, w,,w,, ).
For the given surface equation X' = F( X', X? ) and the
known camera parameters, the coordinates ( X', X° )7
can be obtained from the image coordinates x =(x', xv? )7
by numerically solving Eq. (4.2). Thus, the coordinates
X=(X"X".X*) in the
symbolically expressed as a function of the image

object space can be

coordinates x =(x’, x7 )", that is,
X=fx). (4.3)
In fact. Eq. (4.3) is a parametric representation of the
surface using the image coordinates x =(x’,x? )7 as the
parameters.  Generally, the function f¢(x) cannot be
writien as a closed-form solution except in some special
cases such as a plane and a cylindrical surface.
Differentiating Eq. (2.9), we have

dW,"X +W, dX =aw," X

dW," X + W, dX =aw,” X . (4.4)
When the lens distortion is fixed, dW,T =d,\"m‘,lr and

dWw,” =dx’m,”  hold. Then,  substitution  of



dX* =(9F/3X")d X' +(dF /9X" Jd X° into Eq. (4.4)
yields

(dxl}=m’(x -f )Q’[d"J] (4.5)

dx’ PO de’ | N

w,, +w,, OF /9X*
2T | @
w,, +w,, 0F /0X~

where

[ w H e oF /09X’

- { w,, +w,, oF /X'
Furthermore, the differential dX” can be expressed as a
function of the image coordinates dx = (de’ . dx’ )"

dX* =(dF 7dx’ )dx’ +(dF /dx? )dx’, 4.7)
where
dF _ F X' 9F X’

_—= +
de  oX' ox®  9X° o
Combining Egs. (4.5) and (4.7). we have

Aa=12) (4.8)

dX = m, (X~ f )Qdx. (4.9)
where
QAI
0=| dF dF (4.10)
(L S m (X = f)

Eq. (4.9) provides a fundamental relation between the
differentials dX on the surface and dx on the image

plane.  The mairix 6 is a function of the image
coordinates, the camera parameters, and the geometric
properties of the given surface.

On the other hand, we notice

dX =(9X /9x' )dx' +(9X /ox” )dx*.  (411)

From Egs. (4.9) and (4.11), we obtain the following
equality

(9X /ox' . X /ax* ) =m, (X, — fs)Q. (4.12)

The element dS of the arc length of a curve on the surface
can be determined from Egs. (4.11) and (4.12) from the
image coordinates. We know

dS® =1dX | = g dx“dx? (4.13)

where
_o0X . oX
8ot = o P
is the so-called metric tensor in classical differential
geometry [18]. The summation convention is used in Egs.
(4.13) and (4.14). The quadratic differential form Eq.
(4.13) is the first fundamental form of the surtace in which
the image coordinates are the parametric variables. In the

(a, B=12) (4.14)

case of the perspective projection transformation, g .z

may be properly named as the perspective metric tensor
that is a function of the image coordinates, the camera
parameters, and the properties of the given surface.

The first fundamental form Eq. (4.13) allows us to
measure the hasic geometric quantities on the surface in
the 3D object space from the image quantities. Consider a

curve on the image plane given by a parametric form
x(t)=(x'(1),x*(1))’ and the corresponding 3D curve on
the surface X(1)= X(x(t})= f(x(t)). where ¢ is a
parameter (e.g. ime). The length of an arc bounded the
points corresponding to the parametric values 7=t, and

t=t,1s

S= | [ g dx™/dt)dxP /dr)]' dr. (4.15)

The angle of two 3D curves at the intersecting point on the
surface can be calculated based on the image quantities.
Consider two image curves Xx(f)=(x'(t)x*(1))" and
x(t)=(x""(1).x**(1))" . The tangential vectors of the two
3D curves on the surface are
dX(x' (1), X’ ()Vdt = X/0x* dx™ / di and
dX (x"* (1), x**(t)/dt = 0X/0x"* dx** /dt . Thus, the angle
vy of intersection is
g(,/,(dx”/dt)(dx/’*/dt)

J?(,/,(d,x”/dr)(d,t”/dt)\[qaﬂ(dx‘”/dt)(dx”*/dt) '

(4.16)
The area of a domain H on the surface can be expressed in
the image coordinates

A(H) = jj,/;dx’d.r’,
g

where U is the domain in the image (x',x7) plane
corresponding to the domain H on the surface in the object
space and g is the determinant g =l g, |
Example I: Plane

The plane constraint is a simple, but very useful case
in which the vector function f(x ), the matrices Q and

cosy=

(4.17)

O can be explicitly expressed as a function of the known
camera parameters and the measured image coordinates.
Many aerodynamic flow structures are observed on a plane
or a near-planar surface.  Planar laser sheet flow
visualization is just a typical case of the plane constraint.
In addition, a polyhedron consists of a number of the
planar faces. Consider a plane in the object space

X‘=a, X +a,X +a,. (4.18)

This plane is defined by the vector a =(a,.a..a, )

related to the normal vector of the plane. In this case. the
matrix Q in Eq. (4.6) is

[w,, +w,,a,

W, + W, d,

W, +w,,d, ] (4.19)

W,, + Wy, a;
The function fg¢(x) in Eq. (4.3) has a closed-form

solution



ol
fslx)= o o't | (4.20)
)
where
LAD gt
p=| 7 STt ) (4.21)
W, X —-w,aq,
Now the matrix a in Eq. (4.10) is
-
Q=[( f)Q_,]. (4.22)
al‘ 2

Example 2: Cvlindrical Surface
A cylindrical surface is another case where fo(x ), Q

and 5 can be explicitly expressed. For the sake of
convenience, a transformation from the Cartesian
coordinate system to the cylindrical coordinate system is
used. 1.e..

X=(X".X".X") =(pcoso, psing, )", (4.23)
where p is the radial coordinate, @ is the polar angle, and
Z 1s the axial coordinate. The differential dX is

cosp —psing 0Ydp
dX =|singp pcosep 0 |do ).
0 0 1 |dz

For a cylindrical surface constraint

(4.24)

p=p, =const.,
solving Eq. (29) for ¢ and z. we have f.(x) as a

function of the image coordinates and camera parameters

fsltx)=(p,cose, p,sing. z)" . (4.25)
where
cosQ = 3 3 —.
] b.b, tbib} +b} —bib?
S = —

bf +b_:’

.=l . ; T
I=wp(w,pycoso+w, posing-W, X ),
by = py(wwyy —wyw,, ),
by =P wwy, —w,, W ).
b,=w,, W, X, —w, W, X

c=w, WX —w, W, X

solutions  for  f(x ). which arc
corresponding 10 two intersecting  points between a
perspective ray and the cylinder.  For a non-transparent
solid surface, a camera only sees one intersecting point at
the surface facing the camera and hence fof x ) is one-to-
one. The differentials in the cylindrical coordinate system
are related to the image coordinate differentials by the

following relation

d( o, I = m‘;T(Xr_fs )Q_/(LV,

There are wo

(4.26)

“mapping (homeomorphism):

_[WPycos@=w,p,sing  w,
WPy COSP=Wy P, SiNQ  w,y,

Another differential is dp =0 . Note thal the expressions

(4.27)

of fo(x), Q and 6 for a spherical surface can be also
analytically derived. but they are so tedious that we do not
present them here.

5. Perspective Projection of Motion Field Constrained
on Surface
After discussing the geometric relationship between a
surface in the object space and the image plane, we study
kinematics under the surface constraint, that is, the
perspective projection of a motion field on a surface.
Consider a dynamical system
17,4
—=U(X), (5.1)
dt
where U(X )=(U,.U,,U,)" is a motion field in the 3D
object space and t is time. A surface constraint imposed
on the motion field Eq. (5.1) is
X'=F(X'.X?). (5.2)
Under this surface constraint, U( X ) should be parallel 1o
the surface, which obeys the orthogonality condition
N, sU(X)=0. (5.3)

where N =(0F/0X',0F /dX°,-1)" is the normal
vector of the surface. Under the surface constraint Eq.
(5.2), Eq. (5.1) is effectively reduced 1o a 2D system
d{X') (UJX" X3 F(X'X")]
E{x-’]_ U [ X' X2 F(X'.X?)]
In fact, Eq. (5.4) describes an orthographic projection of
the motion field Eq. (5.1) onto the plane ( X', X- ). From

Eq. (4.5). the dynamical system in the image plane, which
is corresponding to Eq. (5.4). is

w= -—— 9 Ui sl s )
diix® | m, (X ~f )| Us[ fs(x)]

We call u=dx/dt =d/dix’,x” )" the optic flow in the
image planc. The optic flow. a term first used in computer
vision, is defined as the velocity field in the image plane
that transforms one image into the next image in a
sequence.  If Eq. (4.2) gives a one-to-one topological
(x' a7 J(X', X% ), the
topological structure of the dynamical system Eq. (5.5) in
the image plane is equivalent to that of Eq. (5.4) on the
surface in the object space when Q has the full rank of 2

. 5.4)

and m," (X, ~ f, ) is not zero. Figure 6 illustrates this
point. The problem is to recover two components of the
motion field (U, U, )" using Eq. (5.5) from the measured



optic flow u = dx/dr . while the third component U, is
readily obtained from the orthogonal condition Eq. (5.3).
In the above analysis, we do not specify the motion
field U( X ). which could be a limiting viscous flow ficld.
an oil-film motion field driven by skin friction, or a
particle motion field driven by a potential force (e.g.
gravity and electromagnetic  force). The physical
constraints on U( X J. which are different in different
cases, are necessary to reduce the number of unknowns.
For instance, an incompressible flow must obey the
continuity equation
VelU(X )=0, (5.6)

where V=(0/9X'.0/0X>.0/0X" )"

operator. Differentiating Eq. (5.3) with respect to X, we
have

is the Laplace

U, 9oF oU,  oF dU,

ax’  ax'ox’ ox?ox'’
Substitution of Eq. (5.7) into Eq. (5.6) yields a constraint
on (U,.U, )" for an incompressible flow field.

_a_+_a_F___a_ U/+ __L+i-j— U,=().
ax’ X’ ox’ X® axiox') ”

(5.7

5.8
In general, it is more difficult to directly ()bla(in a)
global solution of Eq. (5.5) for the motion field
(U, U, )" . Instead, we can seek a localized solution of
Eq. (5.5) in a sufficiently small area. Ina neighborhood of
a point X, the motion field (U,. U, )T can be expanded
as a linear function of X
UlX)=e,+(e, e e, (X=X,) (i=12) (5.9)
where e, =U,(X, ) arc the local velocity components
and e, =0U,(X,)/0X’
deformation components. Hence, the localized form of Eq.
(5.5) is written as

!
Du:i '\’ __T__Q____
d’ x° mJ (Xc_fs)

[€11)+(ell. e e fs(x)=fsl(x, )]
X =0

(j=123) are the local

(5.10)

€y ey €€y W fs(x)=fs(x4)] -

The unknowns e, and e,, can be determined by

minimizing the norm (| Dull. i.e.,
.11

At the final stage, the global motion field on the surface is
reconstructed from the local motion fields.

In an incompressible flow, the localized constraint Eq.
(5.8)1s

Il Dull = min .

F F
e, te,—+e, ey, J =0. (5.12)

X' X’

Furthermore. for the irrotational motion field on a solid

surface  where  the vorticity vanishes, L.,
w =V xU( X )=0.threc constraints are
d°F oF d°F oF
U —+e,, +U, —+e,, ——¢,, =0,
PaxTax®  Pax’ oxtox? Tax: Y
o°F aF o' F oF
U +e +U, - +e, ——¢, =0,
raxax’ ax ' taxlax' ox: Y
e, —e,=0. (5.13)

Hence. for an incompressible, irrotational motion field.
eight unknowns in Eq. (5.10) are reduced 1o four
unknowns after these constraints are imposed. At the
critical  points,  the  velocity vanishes,  ie.,
e, =U.(X,)=0. The local topological structures of the
motion field at the critical points are determined by the
deformation coefficients e, [19].

The above method for calculating the local motion
field is applicable to both discrete random particle patterns
(c.g. particle image velocimetry (PIV) patterns) and
continuous passive scalar patterns (e.g. laser-sheet-induced
fluorescence patterns in fluids). When discrete particle
patterns are so coarse that an individual particle can be
tracked, the local optic flow u =dx/dt is the velocity of
the particle in the image plane [20-21]. For dense discrete
particle patterns, the local optic flow u =dx/dt can be
obtained using PIV method to seek the maximum
correlation between two particle patterns obtained at two
consecutive instants. However, for continuous passive
scalar patterns, recovering the local optic flow u = dx/dt
is non-trivial since we have to consider the perspective
projection of the transport equations of passive scalar
through a specific imaging process. Generally speaking,
the perspective projection of physical processes will fcad
to motion equations of image intensity. The optic flow
u = dyx/dt is determined by solving the motion equation of
image intensity for a specific physical process given the
suitable boundary conditions and constraints. Detailed
discussion on motion equations of image intensity will be
given in Section 12.

6. The Correspondence Problem

In Sections 4 and 5. three unknown coordinates in the
object space are reduced to two when the surface
constraint is imposed. Thus, the correspondence between
the constrained surface and the image planc is one-to-one.
In order to determine three unknown coordinates from
multiple views without any a priori constraint, however,
we need to know the point correspondence between two or
more images for the same physical point in the object
space. This is the so-called point correspondence problem,
one of the fundamental problems in 3D vision. Note that
another correspondence problem is point correspondence
in a time scquence of images. Here we focus on the



stercoscopic correspondence of images rather than the
temporal correspondence.

Longuet-Higgins [22] gave a relation between the
corresponding points in two images.  Consider two
cameras in which the unit vectors (m,, .m,, .m,, )
constitute a local right-hand coordinate system whose

origin is located at the perspective center X, . where

n=1,2 is the index denoting the cameras 1 and 2. The
T
—(X(HJ‘ (n)' (n))
in the coordinate frames (m,,,.m,, .m,, ) are related by
of the

three-dimensional coordinates X,

a  tensor-form translation and  rotation

transformations

Xo =Ru(Xh, =T?), (6.1)
where R=[R,, | and T, = [T/ | are the rotation matrix
and translation vector. respectively. If the two cameras
have the same principal distance and pixel spacing ratio,
R and T, can be obtained by translating the origins X,
and rotating the vectors (m,,, .m,, .m,, ) (n=12)to
match the two coordinates frames. Here R and T, are

generally treated as the unknown matrix and vector,
A new matrix @ is given by

Q=RS or S, =R, S,,. (6.2)
where S is the skew-symmetric matrix
o T -T
S=-T" 0 T (6.3)
T} -T' 0
Eq. (6.3) 1s written as a tensor notation
Sy =€8.1° (6.4)

where the permutation index &, =1!lor—1o0r0 if

upe
(..o} is an even, or odd permutation of (1,2,3), or
otherwise. From Egs. (6.1)-(6.4), we know

X5 Qo X1 =R, (XX —T" )R 7°X /"

2 (1)
=(X/;,~T' JE 54 T_"X,,, =0

i yﬂo'

. (6.5)

since R is orthogonal (R, R,z =38,5) and €, is anti-

ﬂymmctric in every pair of its subscnpts. Note that
X, =(X/ X/, )" are the coordinates in the local

frame (m,,,.m,, .m,, ) whose origin is located at the

(it (n)‘

perspective center. Thus, the collinearity equations Eq.
(2.2) can be re-written as a simpler form. In the local

coordinate frames (m,, .m,, .m,, ). without the lens

distortion, the homogenous  image  coordinates
[xp,, ]=(x/,,.x7,,.—c)" are related o the object space
coordinates X | by

Xy, == XS /XD (n=12.a=123) (6.6)

(ny

10

The image coordinates x¢  are relative to the principal
point in these local frames rather than the geometrical
center of the image. Dividing Eq. (6.6) by X/, X/, /¢?
yields the Longuet-Higgins equation for the image point
correspondence

Xy Qug XL, =0. 6.7)

Often, @ =/Q,, ] is called the fundamental matrix that is

related to the camera exterior orientation parameters.
Given a number of the point correspondences between the
two images (more than eight), the elements Q, can be

determined by solving the following algebraic equations
using a least-squares method

(Xps X5, ) Qo =0. (i=12,-) (6.8)
Longuet-Higgins® original derivation of Eq. (6.7) is
purely algebraic  without giving a  geometrical
interpretation.  In fact, the geometrical meaning of Eq.
(6.7) is related to the epipolar lines in the images [2-3].
Given a point (x/,,.x7,,) in the image 1, its epipolar line
in the image 2 is a projection of the line connecting the
object space point and the image point through the optical
center in the camera 1 onto the image 2. The epipolar line
in the image 2 is described by

=0, (6.9)

s
iz Pariy

where p,,, =0, xll,, are the coefficients of the epipolar

line. Thus, the matrix @ maps the points in the image 1 to

the epipolar lines in the image 2. In the same way, Eq.
(6.7) also gives an epipolar line in the image | for a given
point in the image 2. Hence, Eq. (6.7) serves as the
epipolar constraint to reduce the number of unknowns in
establishing the point correspondence. It is easily shown

that when the lens distortion exists. the gencralized
epipolar constraint is

hr" +5‘h( »)Qaﬂ(\hm'l’&‘ml))—() (6'”))
The lens distortion terms are

ox’

2,,.0)" . Since the lens distortion

[Ox5, ]=(6x]

terms in Egs. (2.4) and (2.5) are non-linear, an epipolar
line is a curve rather than a straight line. More point
correspondences are required to solve Eq. (6.10) since
there are additional unknowns associated with the lens
distortion.

The unknown fundamental matrix in the epipolar
constraint is determined by using a number of point
correspondences. Nevertheless, for two calibrated
cameras, the image point correspondence can be directly
established from the collinearity equations. The
collinearity equations Eq. (2.9) for two cameras are written
as

fnj)’

l(n) (X X
WZ(n) (X - Xc{n) )=()

c(m) )=()

(n=12) 6.11)



Re-combination of Eq. (6.11) yields two sets of linear
equations for X

W, X =B, .. (6.12)
and
W,mX =B (6.13)
where the composite matrices and vectors are
WI(I)T WI(I}T
Wicom = Wz(uT - Waoom = wzmT ’
WI(.?AT WZ(Z)T
WI(I)TXL‘(I) Wl(l) Xt‘{l)
B ym = qu:TXcm < Byom = qu) X (6.14)
WI(ZJTXC(ZJ W2(2) X

Eliminating X from Eqgs. (6.12) and (6.]3). we have a
relation between the image coordinates (x},,.x7,) in the
image 1 and (.r,’,,.x,", ) in the image 2

w, W B

fcom

=0.
(6.15)
For a point (x/,,x7,) in the image I. the corresponding

! J2
G(xtl)"xtl}‘ X (2 (’) ) 2com ™" 2com Iwm

epipolar line in the image 2 is given by
W) 2Ly 2 —
WG(x),,. x5, x). x5 NI=0 (6.16)
The Longuet-Higgins equation indicates that a point in
the image 1 corresponds to the epipolar line on the image 2
and vice versa. Therefore, the point correspondence is not
uniquely established between a pair of images since given
an image point (x/,.x7, ). there is only one equation for
two unknowns (x/,,.x3, ). In order to establish the point

correspondence among images, we need at least four
cameras (or four images). For four cameras or images. the
Lonuuet-Higginq equations are

Xy Quprie ,;Xm,) =0.(i=1234.j=1234) (6.17)
If the fundamental matrices Q4 ;, arc determined by
calibration, for a given point (x/,,,x;;, ) in the image 1, we
have a system of six algebraic equations for six unknowns
(X)) X2 X X Xy X )
=0, xyp,, Qaﬂ, 1 x,ffj, =0,
=9,

Xiry Qapri-2 ) “‘hm

L« ;R a 8
Xita) Qugr 230 Xnisy = O, xi), Qopei-a) Xiwar

. B
";,I(z) Qaﬂ4 2-d) Kby = 0, x}(;_h Qaﬂ( 3-4) )‘h(J) =0. (6.18)

When the four cameras are suitably positioned, Eq. (6.18)
is not singular and the solution of Eq. (6.18) for
obtained wusing an

I SR B S . s
(X)) X X2y X2y Xy XG5y ) can be

iterative method. In general, there are multiple solutions
since three equations in Eq. (6.18) are quadratic. The
correct solution has to be selected based on additional

criteria.  More than four cameras can be used to increase
the redundancy for least square estimation.

7. Composite Image Space and Object Space
Eq. (6.12) gives a non-lincar relation between the
object space coordinates and X and the composite image

=(x},. x5, x5 )" . As shown in Fig. 7.

the local coordinate frame (m,,,.m,,, .my,) at the

coordinates X,

perspective center X, on the image | can serve as a

frame for the composite image space in  which
2 I T N . . . :
X, =(x),,x5,.x5 ) are the coordinates along the unit

vectors (m ;.M y,, .My, ). Note that the coordinate x),
of the corresponding point in the image 2 is artificially
assigned to the coordinate value in the axis m;,, in the

composite image space. Mapping between the composite

image space and the object space Is one-to-one.
Differcntialinu Eqg. (6.12), we have
ltum dX + derum X= dBlcam . (7 1 )

Substitution of Egs. (2.10). (6.12) and (6.14) into Eq. (7.1)
yields a basic differential relation between the composite
image space and object space (see Fig. 7)

dX = H( X com )dxmm ordX®=H ti( xmm d (/gnn » (72)
where

m;,, (wlrum lcom — Xr(l) ) 0 0

( com ) Wlmm 0 mj(l) (wl:‘llmelmm - Xc(l) ) 0

T -

0 0 m,?(Z) (Wlullm Blrom - Xt(l) )

7.3)

Consider a 3D curve in the object space. The arc

length dS of the curve in the object space is expressed in
the composite image coordinates, i.c.

dS ’= dX “ dX = Jllﬂ d“‘((f‘lﬂdx/‘:{'lﬂ *
a = H /HIH up -

ds =(dx® dx"

com com

obtain a relation between dS and dv

(74)

where J Introducing the arc length

)2 in the composite image space, we

dS L( mm (7'5)
The length scale factor Lf x,, } is
L( xcum ) = ( ‘](Iﬁ t((:m rtlrinn )1/3 * (76)

where 1% =dx" /ds is the unit tangent vector ., of

conm con

the corresponding curve in the composite image spacc.
Using Eq. (7.5), we are able to express the unit tangent
vector T of the curve in the object space in the composite
image space coordmdles and tangent vector, i.c.,
“=dX/dS=L"H amn

The principa] normal vector K of the curve in the
object space is

aff f{ om



oH,L")
K =dT ms = | —2_~

dx

Teom

‘ -1 ,
10,10, + L H 4B

CONE com

(7.8)
where k;, =dtf, /ds=d°t", /ds’ is the principal

com con cont
normal vector of the corresponding curve in the composite
image space. In the derivation of Eq. (7.8), the relation

d/ds=t* d/0x* is used. The curvature of the curve

(a2 com
tn the object space is
Km,j =(K11Ku )I/D . (79)

Egs. (7.8) and (7.9) indicate that the curvature is not an
invariant under the perspective projection transformation,

which depends on not only k% . but also t® and the

camera parameters. The unit principal normal vector N is
obtained by normalizing K
N =x} K and N®* =x'K®. (7.10)

ohj obj
The unit binormal vector B of the curve in the object space
1s
B=TxN or B = ¢, T’N°. (7.11)
Thus, the torsion of the curve in the object space is
T, =—N"dB" /dS

==K KL € g (NPNT TPt ONT /ax” )
In this stage, the geometric structures of the 3D curve such
as the tangent, curvature and torsion are expressed as a
function of the composite image space coordinates. In
general, they are not differential invariants under the
perspective  projection  transformation. In  many
applications. however, these geometric quantities are very
useful since they are directly related to the physical
properties associated with the curve. The useful physical
properties can be extracted from them. For example, the
motion of an isolated vortex filament (a good model for a
tornado) is mainly determined by the curvature and torsion
of the filament [17].

From Eq. (7.2). we can relatc the motion field

U (X )=dX/dt in the object space with the motion
com )= d“.({ffl"

U X )=H,(x,, Ju,. (7.13)

The motion field U, (X ) can be decomposed into two

. (7.12)

field w, (x /dt in the composite image space

componenls
U (X )=dX(S())/dt =X /Ot +TdS /dr . (7.14)

The first term dX “/0r is the apparent velocity and the
second is the deformation velocity along the curve.
Similarly, u,( x,,, ) has two components

u x,, )=dx’ (s(t))/dr =ox® /Ot +t* ds/dr. (7.15)

com Com com can
If the point correspondence of the curve at two successive
instants is not known, Eq. (7.13) cannot be directly utilized
to calculate the motion field U, (X ) form image

measurements. The deformation ds / dt in the composite

image space cannot be determined from images without
using any additional physical constraint. Thus, we have to
look for a global method for recovering the motion field
that is briefly discussed in Section 3.

8. Perspective Invariants of 3D Curve
Construction of perspective algebraic and differential
invariants for a 3D curve is difficult because the
perspective  projection  transformation  is  non-linear.
However, it is possible to construct semi-differential
invariants in a special case of stereo image pair [23]. The
perspective invariants are useful since they can directly
give certain geometric features of the curve from non-
calibrated images. We use the perspective projection
transformation for a pair of images
Xuiy = Aoy Poy Xy (i=1.2) (8.1

('

where  x,. =(x/.x;.1)" is the homogenous image
coordinates in a pair of images (i=/2).
X,=(X'.X?, X' 1) is the homogenous coordinates in
the object space. and P, =[P, . ] (n=123,
m=1,234) are a 3x4 matrix that only depends on the
camera orientation parameters (see Section 2). In general,
=—c,/m, ' (X-X_, ) for the
two images are not the same, which are related to the
camera parameters and the position of a point in the object
space. Here we consider a special but useful case in which
the scaling factors in two images are equal, i.c.,

A, =As, =4, (8.2)

The condition Eq. (8.2) implies

the scaling factors A, ti

Copy T Caye Mgy =My, m.v(nT (Xezy=Xopy)=0. (83)
Eq. (8.3) indicates that the two images have a relative shift
on the same plane normal to the vector m,,, = m,, . This
means that two cameras are placed side by side and their
optical axes are in parallel. This coplanar condition allows
us to combine the collinearity equations Eq. (8.1) for the
two images, which makes construction of perspective
invariants possible.

A relationship between the composite image space
and the object space for a 3D curve is written as in the
homogeneous coordinates

Xieom(S(S)N=US}IP, . X, (8.4)
where  x,.,, =(x},,.x7,.x,,.1)7 is the composite
homogeneous  coordinates  in  the image  space.
X, =(X',X?, X" 1) is the homogenous coordinates in

the object space, and P, is a composite matrix
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The arc lengths s and S of the curves in Eq. (8.4) are used
as a parameter of the curve in the composite image space
('rtllwxr:/w'\‘(lz» ) the ( X ! , X: . X 4 ).
respectively. The function s =s( S ) is one-to-one.

Brill et al. [23] has constructed projective invariants
by differentiating Eq. (8.4) repeatedly with respect with S,
arranging the results in matrix equations for several points
on the curve, evaluating the determinants of the matrix
equations, and then eliminating all the factors related to the
imaging paramcters. At first, following the method
developed by Brill et al. [23]. we consider a number of the
basic geometric structures. The curvatures in  the
composite image space and the object space are [18]

o L and K, =1 X 1=1Xx X1,
(8.6)
/ds”,

and object  space

Ky =X 0 1=1X,,, XX

com

=d’x

com

/ds, x

com

where x, =dx

X =dX/ds.

com

the derivatives
torsions in the

and X =d’X/dS*
with respect to the arc length.

are
The

composite image space and the object space are.
respectively.
T Ixcum xcnm com I / Ixrom ) L (8'7)
_—|xhcnm thm xhwm L/ Ixcum -
and
T, =1 X X X1/1XP=-1X, X, X, I/71XPF.  (88)

Egs. (8.7) and (8.8) are exprcxsed in the homogeneous
thm (‘4/| ’)vl )T and

L =(X X2, X4 1) to facilitate the use of Eq. (8.4).

coordinates X

In the object space, the unit tangent vector is T = X . the
X/« .and the unit
We define

the distance D, from a point X; to the osculating plane to

unit principal normal vector is N = o

binormal vector is B=TxN =X x X /K, -

the curve at another point X ;
D,=(X,~X,)eB;=1(X;-X;) X, X, 1/K,,;
=1X,, X,; Xu; Xpil/K

hj hj by j

(8.9)
and ‘j° denote the quantities
The geometrical

‘

where the subscripts ‘i’
associated with the points X; and X ;.

meaning of D, is illustrated in Fig. 8. Similarly, in the

composite image space, the distance d, from a point

x__. 1o the osculating plane to the curve at the point

com,t

xmm‘j

di[ =|(thmj - thm i ) thmj thmj l / K‘un‘/ (8 l())
=| thm_; xhcnm i xht‘um Jj X ncom, i 1/ K-IHI i

In addition, we introduce the following geometric

quantities

(11 2.3) =\ X et Xpcomt Xhcom2 Xneom s 1+

’(1‘ 2' 2 ' 3) =1 xhcum,l thm,z thm,l thm, 3 | *

11,1,23)=1X,, X, Xpo Xpilo

11,22.3=1X,, X,, X,, X, (8.11)

Differentiating Eq. (8.4) with respect to S, we obtain

_ ] (i
xhrum,i = IPhunn( X h.i Xh,i /1‘
él’
'.x:hmm.i = hmm( Xhl hi h.l' ) 5}:2[ *
4
Lf _2":‘fh
£ .
:fhmm.i = 'ithm(Xh.l Xhl X Xlu o +§" 2s£jl
E,+ A +254,
4
(8.12)
where &, =A -A5s". &, =24-455T,  and
s=ds(S)/dS. From Egs. (8.6)-(8.12), we have the
following determinantal relations
Kl‘ml Tuml = 14 - IPh(nm lK-r:h_, i Tnl:j.i M (8l3)
K, d; = A; /1’. 7P, K i) Dy - (8.14)
(1D.2.3)= A, A5 VP, U(1.1.2.3), (8.15)
i(12.2.3)=2 44,57\ P, 1(1.2.2'.3). (8.16)

The subscripts ‘i’ and *j’ denote the quantities associated
with the points X; and X in the object space and the
corresponding points x,,,; and X, ; in the composite
Re-arrangement of Egs. (8.13)-(8.16) to
and 1P, | yields several semi-
differential perspective invariants.
(I) An invariant related to

distances D, and d, is
2-u/:il D;’

d?,
Bl = (8.17)
d;l Tnhj.] D.;/

D,#0,

image space.
eliminate 4,, 4,. s,

hieom

the torsions and the

T

iml

llll

For 7., =0, 20, and D,, #0. then

obj.l nh[

7., =0. The zero-torsion point in the object space

imJd

corresponds to the zero-torsion point in the composite
image space. The condition D, #0. and D, #0



implies that the points X, and X, are not on the same
osculating planc.

(I) An invariant related to the curvatures, the
distances D, and d . and the quantities i 1,/°.2,3),
i 1,2,2°,3) 1011 2.3)and 1(1,2,2°.3) is
D, I°(1,1'2,3)
D, 17(1,2,2.3)

Ko dp 17(1.172.3) E

(8.18)

- 20100 T,
’\un.l d.’l ! (1“"2 “?) Knly]l

For x,.=0. Kk, ,#0, D,#0, and D, #0. then

K,,» =0. This means that the zero-curvature point in the
object space corresponds to the zero-curvature point in the
composite image space.

(ItI) An invariant related to the distances D, and d,

d.‘l d-/.*‘ - DL‘I l)-lf

d,d,, D, D, '
This result is analogous to the cross-ratio of the distances
on a line. a classical perspective invariant in perspective
geometry [2, 24].

(8.19)

9. Modeling of Imaging System

Modeling of an imaging system is necessary for
radiometric measurements. Figure 9 shows a radiation
source at an infinitesimal arca element dA, on the optical
axis, having a distance R, from the optical center of the
imaging system like a CCD camera |25]. The radiant
energy (units; joule) from the area element integrated over
a solid angle seen from dA, to a lens is

dQ =dA, er‘L(H.¢)cos6’da). 9.1

where L(8.¢) is the radiance (units: watl-m'z-sr") of the
dA . dw=sin@dfd¢ is the
infinitesimal element of solid angle, @ is the polar angle
(measured from the surface normal), ¢ is the azimuthal

radiative  source at

anglc (measured between an arbitrary axis on the surface
and the element of solid angle on the surface), and dr is a
time interval. The number of photons collected by the lens
is

dn,, =(hv)'T, dQ

‘ . (9.2)
-[ (8,9 )cos8dw

=(hv)'dA dtT

i

where v is the energy of a single photon and 7, is the
transmittance of atmosphere air. Define 8, as the angle
between the optical axis and the line connecting dA, and
When 6, is

(sinf, ) = A,/R; is approximately the solid angle in

small,

the edge of the aperture.

which the radiative energy from dA, is collected by the

imaging system, where A, is the imaging system aperture
entrance area. Thus, Eq. (9.2) becomes
dn,, =L, dA diT, (A,/R]). 9.3)

atm
where L, is the average photon radiance over the

collecting solid angle A,/ R =(sin@, )’

L, =(hv)'(sinf, )"’J' 1(8.¢)cos8dw . 9.4)

Consequently, the number of photons reaching the image
plane is
dn (9.5)

where T, is the transmittance of the optical system. The

m = L[: dA; d’ ( AH / Rf )7-:1"”7:1117 *

number of photons incident the detector element is simply
proportional to a ratio between the detector element area
Ap, and the image area dA, corresponding to dA,

dn,, =dn, Ap/dA,. (9.6)
Under the approximation of small angle 6, <</, dA, is
related to dA by

dA /R; =dA, /R; . (9.7
where R, is the distance of the image plane from the
Substituting Egs. (9.5) and (9.7) 1o Eq.

im

optical center.

(9.6) and using the relatons A, =zD°/4 and
I/R,+1/R, =1/ fl.wehave
L A,dtT, T
dﬂ‘m =£ p’ D ann u/’ll (98)
4 F-(I+M,),,, )
where £ = fl/ D is the F-number and M, =R,/R, is

is the diameter of the
Thus, the total

the optical magnification, D
aperture, and f1 is the focal length.
number of photons collected over an integration time ¢,
is

— z L/) Al) r[NT 7"{"!”7;!1)1

4 F“’(I+M,,,,, )y

Since some of the variables in Eq. (9.10) depend on the
frequency v of light, the number of photoelectrons
generated in the solid-state detector over a frequency band
[v, v, ] is

Lo Fi(1+M,, )

(9.10)

n det

Tmn( v )7-:: Il( v
‘ : )dv

'1 /).“ =

»

9.11
where Ry( v ) is the detector’s quantum efficiency ((units:)
electrons/phonon).  We separate the photon radiance L,
into the radiance magnitude Z; independent of V and a
shape function of the frequency spectrum fa(viiie,

L,=L,f (V). (9.12)
Therefore, Eq. (9.11) becomes



”pr = pumr Lp *

describing

(9.13)

where p_,, is a parameter the camera

performance

.Dmm =I - R#(V)
vy

E f\,y( v )An Tivr Tmm( v )Tu,u( V) dv
4 Fi(1+M,, ) '
(9.14)
After the camera is radiometrcally calibrated, the
image intensity (gray level) is proportional to n , . L.c..
(9.15)

determined by

I( X ) = CIm ”,w "
The

calibration. The above analysis is made based on the
assumption that the radiation source is on the optical line.
In general, we have to take the off-axis effect into account
[26-27]. Hence, a generalized form of Eq. (9.15) is

- T coct
I(x)—(hn pumr LP(US 9,:’

proportional constant ¢, 1s

(9.16)
where 6, is the angle between the optical axis and light
ray through the optical center. When the lens distortion is
negligible, the angle €, can be expressed as a function of
the image coordinates x . the principal point location x,
and the principal distance c, i.e.,
0[,=arctan(|x—xp|/('). 9.17)
Grouping the terms in Eq. (9.16) that are only dependent
of the image coordinates to the left-hand side, we get
Hx)O(0x=x,0=Cp P L X )y (918)
where the function describing the off-axis effect can be
approximated by
O (lx-x, =cos™0,=1+21x-x, P/¢?. (9.19)
Assuming that the off-axis effect is corrected on the image
plane, without loss of generality, we simply rewrite Eq.
(9.18) as
H(x)=cCp Pom L( X ). 9.20)

In order to simplify the notations. we use replacements

Cow = Cop P and L(X )—>L-ﬁ('X ). Therefore,
without loss of generality, Eq. (9.20) becomes
I(x)=c, LX), (9.21)

where ¢, is a proportional constant related to the imaging

system and L{ X ) should be understood as the spectrally

averaged radiance.

10. Typical Radiation Processes
Surface Reflection

Quantitative image-based measurements require the
knowledge of the physical properties of radiation-matter
interaction of the objects of interest. One of the important
interactions is reflection on a surface. As shown in Fig.
10, the incident radiance is generally a function of the

incident direction (6,.¢, ). i.e.,

L=L(6.9 ). (10.1)
The reflection radiance L (6,.¢,:6,.¢, ) is quantitatively
characterized by the bidirectional reflectance distribution
function (BRDF) {28]
1.(6,.¢,:6, ¢ )=dL.(6,.9:06,.0 )/dE (6.9, ). (10.2)
where the infinitesimal incident irradiance dE(6..0;)
over a solid angle element dw; is
dE(8,.¢,)=L/(6,.9, Jcosbdw, . (10.3)
The BRDF has a unit of steradian”’. The BRDF depends
on the surface roughness distribution. Foe a perfectly
diffuse surface or a Lambertian surface where the
reflection radiance is isotropic, i.c.. L, = const. . the BRDF

is f, =1/7. Inthis case. the reflection radiance 8

L =(1/n)I L(6,,¢ )cos6 dw, . (10.4)

Furthermore, when the incident source of the irradiance
E, is collimated at a fixed incident direction (8,.9, }. the
incident radiance is described by the Dirac-delta function

L(6,.9 )=E, 006,-6,)5(¢ -9, )/ sin@, . (10.5)
Thus, Eq. (10.4) becomes the Lambert’s cosine law
L =(1/m)E,cos6,. (10.6)

For a general surface, the BRDF can be derived based
on either the wave equation for clectromagnetic waves or
geometrical optics.  Using the method of Helmholtz-
Kirchhoff integral. Beckmann and Spizzichino [29] have
derived an expression for the mean powcer of
electromagnetic wave scattered from a rough surface.
Similar integral approaches were used by Icart & Arques
[30] and Wang [31]. Icart and Arques [30] derived an
expression of the BRDF for multlayer materials. which
was composed of specular, directional-diffuse (spread
reflection), and uniform diffuse (Lambertian) components.
From a viewpoint of geometrical optics. Torrance and
Sparrow [32] gave a simpler expression for the BRDF.
Beckmann-Spizzichino’s model and Torrance-Sparrow’s
model were discussed by Nayar et al. [33] from a
viewpoint of computer  vision application. A
bibliographical review on the BRDF was given by Asmail
[34]. Scattering of electromagnetic waves from randomly
rough surfaces is still an active research area covering a
variety of theoretical and experimental studies [35].

From a viewpoint of application, the empirical
expressions for the scattered radiance from a rough surface
are very useful due to their simplicity [36]. An empirical
model for a single light source is

L(X)=p,E(X)+p, E(X)NNTL,)
+p, E(X)p(RTV) '

where the first, second and third terms are, respectively,
the contributions from the ambient reflection. diffuse
reflection, and specular reflection. In Eq. (10.7). p,, P,

(10.7)



and p . are the empirical reflection coefficients for the
ambient reflection, diffuse reflection, and specular
reflection. As shown in Fig. 11, the vectors N, L, R,

and V are, respectively, the unit normal vector of a
surface, the unit vector directing the light source from the
surface, the unit main directional vector of the specular
reflection, and the unit viewing vector. E(X) and
E,( X ) are the irradiances for the ambient environment
and light sources, respectively. The function pf R'V ) is
the directional distribution of the specular reflection,
describing the spreading of scattered light. Phong [37]
gave a power function p(RTV )=(R"V )". In general,
the main directional vector of the specular reflection, R, is
a function of the incident direction of light =L, . Although
there are theories for predicting R [32]. it is not known for
a general surface. The unknowns in Eq. (10.7), including
R . the reflection coefficients and the parameters in
P(R™V ). have to be determined by calibration. For

multiple light sources. Eq. (10.7) includes superposition of
the contributions from these light sources.
Radiative Energy Transfer in Mediu

When light travels in a medium. the radiance is
affected by absorption, emission and scattering. The
radiative energy obeys overall conservation of energy.
The equation of radiative energy transfer can be derived
based on a balance among absorption, emission and
scattering, t.c.,

dL g,

Ts"=s-VL,] =S, -B,L, Mo L(s; )®,(s,.5 )Mo,

in

(10.8)
where s is the path vector, B, is the extinction

coefficient, &, is the scattering coefficient, @, (s,.5) is

sn

the scattering phase function, S, is a radiation source

term, and the subscript 77 denotes the frequency range.
This transport equation has been used in radiative heat
transfer [38] and radiative hydrodynamics [39]. Note that
the terminology of the radiatve intensity (unit:
walts/area/solid angle) used in literature of radiative heat
transfer is just the radiance in radiometry. The solution
techniques and the suitable boundary conditions have been
discussed by Modest [38].
Luminescence

Luminescence is an emission from molecules after
they are excited by an excitation light with a suitable
wavelength.  Luminescent dyes, widely used as probe
molecules in biological and medical applications [40].
have been utilized for flow visualization and
measurements. For example, based on oxygen quenching
of luminescence, luminescent molecules immobilized in a
polymer layer have been used for surface pressurc and
lemperature measurements in acrodynamic testing.  These

new sensors are called as pressure- and temperature-
sensitive paints (TSP and PSP).  After luminescent
molecules in PSP absorb the energy from the excitation
light with a wavelength 4,, they emit luminescence with a
longer wavelength A, due to the Stokes shift. Liu et al.
[41] have analyzed luminescent radiation from a PSP layer

and obtained the spectral luminescent radiance (L, )

L/._, =h@(P, T g, Es;;()‘.’ )K/(,B;,//‘)M(ﬂ)~ (10.9)

where @( P, T ) is the luminescent quantum yield that
depends on pressure (P) and temperature (7), Es, (4,) is
the luminescent emission spectrum, h is the layer
thickness, ¢, is the incident light flux, g =cos@ is the
cosine of the polar angle @, and the extinction coefficient
B., = ¢, ¢ is a product of the molar absorptivity 8'{/ and
luminescent molecule concentration ¢. The coefficient

M represents the effects of reflection and scattering of the
luminescent light at the wall. The term K, represents the

combined effect of the optical filter, excitation light
scattering, and direction of the incident excitation light.
The luminescent irradiance E,  over a collecting solid
angle Q 18
E. =J. L, cos@dQ

) [ . (10.10)

=B, h®(P.T)q, Es, (i, ) K, <M >Q

where <M > s the spectrally averaged quantity of M .
Even though Liu's analysis was focused on a thin PSP
layer. calculation of luminescent radiance is generally
valid for a luminescent volume where surface reflection is
absent. The spectral Juminescent radiance integrated over
a volume V is expressed as

L, =Es, (4, )K,y"jd)( X)q(X) B, (X )dX .
’

(10.10)
A similar analysis for the luminescent flux was given by
Gaigalas et al. [42].

11. Reflection and Shape Recovery

Reflection on a solid surface depends on the geometric
properties of the surface. In principle, shape of the surface
can be recovered from surface reflectance under certain
conditions. Computer vision scientists have studied the so-
called shape-from-shading problem for decades [43-44].
Here we give a general consideration that is particularly
useful for more complex engineering structures. Figure 11
shows a surface element with the unit normal vector N .
The incident polar angle 6, is the angle between the unit

normal vector N and the unit vector L directing the
light source from the surface. The reflecting polar angle



6, is the angle between the unit normal vector N and the
unit reflecting vector R. The azimuthal angle ¢, is the
angle between the projections of the vectors L, and R on
the surface. Assuming that the reflecting vector R is on
the plane spanned by L, and N, we have
R=ayN+a,L,. (11.1)
The coefficients a, and a, are determined by solving the
following equations
cos@, =NeR=ay+a,Ne+L_.

ReR=a}+2aya,NeL +a;= (11.2)
Eliminating a, from Eq. (11.2) yields
(1+cos* 6, Ja} —2cos” 6,a, +cos’ 6, —1=0. (11.3)
There are two solutions for a;
cos” 6, % \/(l +cos’ 6, Ncos® 6, —cos® 6, )+ 1
“= 1+ cos” 6, '
(11.4)

The reflecting polar angle 8, is not necessarily equal to
the incident angle 6, especially at large incident angles
due to the off-specular reflection phenomenon on a rough
surface [32]. In general, @ 26, insures that there is no
imaginary solution for a,, which is also supported by
experiment data. The condition 8, 2 6, indicates ¢, <0.

Thus, the appropriate solution for a, and a, are

cos’ 6, —
a, =

(1+cos 8, )cos™ 6, —cos” 6, )+ 1
1+cos” 6, |
(11.5)

The reflecting polar angle 6, can be expressed as a

ay =cosB, —a, cosb;.

function of 8, based on theories and experimental results.
In a special, but very useful case 6, =6,. Eq. (11.5)
becomes
. _cos’6, =1 (NeL y =1
Y l4cos?8, I+(NsL, P
_ 2cos@, 2N~ L,
T cos 8 I+(NeL )
Consider a surface X* = F( X', X* ) illuminated by a
single light source. The relation between the image
intensity and reflection radiance from the surface is

l(x)=(.\\\pil EU(X)

+e E(X)[p, NeL +p p(ReV)]
The relation between the image coordinates x and the
object-space coordinates X is given by the collinearity
equations Eq. (2.2). The unit normal vector N is

N =(F FXJ‘—I)T/,/F;, +F;3+l.

x

(11.6)

(11.7)

(11.8)

where F, =dF/dX' and F . = dF /79X °. The unit
vector L, directing the light source X, from the surface
s
L =(X,-X)/1X,-XI. (11.9)
When the camera is sufficiently away from the object, the
unit viewing vector V  directing from surface to the
camera is approximately
V=-m,. (11.10)
which is known for a photogrammetrically calibrated
camera. The reflecting vector R is given by Eqs. (11.1).
(11.5) and (11.6). Clearly, given an image intensity field
I{x), Eq. (11.7)1s a complicated non-linear first-order
equation the
Thus. a numerical solution to Eq.

partial  differential for surface
X‘=F(X'.X").
(11.7) has to be sought with suitable boundary conditions
and constraints.

When the light source is away enough from the object
relative to the size of the object. the incident irradiance
E,(X) and ambient irradiance E(X) can be

considered to be homogenous on the surface of the object,
that is, E, (X )=const. and E (X )=const.. In this

case, the vector L, is also approximately homogenous and
it becomes a constant vector. Thus, Eq. (11.7) is

simplified to
I{x)=c
(111D

+C.\'\\E/\[ptl N .Ls +p.\ p(aNN .V+aLLs .V )]
Eq. (11.11) is still complicated for analysis. Furthermore,
at a Lambertian surface without the ambient illumination,
Eq. (11.11) is simply

I{x)=c E . p,NeoL,. (11.12)
In computer vision, a viewer-oriented coordinate system

and orthographic projection are often used to further
simplify the problem [45]. The viewer-oriented

coordinates ( X', X2 ) in the object space are aligned with

SYN pu E(I

the image coordinates ( x',x” ). The third viewer-oriented

coordinate X is in the direction of the viewing vector V .
Eq. (11.12), known as the image irradiance equation in
computer vision. has been extensively studied for shape-
from-shading [43-44]. For quantitative measurements, Eq.
(11.12) can serve as the first-order approximation.

12. Motion Equations of Image Intensity

In this Section., we derive motion equations of image
intensity from underlying physical principles. The motion
equations of image intensity can be used for recovering the
optic flow and other physical properties from a time
sequence of images of continuous patterns. The temporal
and spatial development of the image intensity depends on
the radiation process that is characterized by the physical



parameters  p=(p,.p,,---.py )’ and the geometric
parameters ¢ =(¢,.4,.---.q,, )" . that is,
Itx,t)=c, X paq.t). (12.1

Differentiating Eq. (12.1) with time, we have the motion
equation of image intensity

a—I+u-V.l =c,, a—L+U-VXL+d—p-V,L+d—q-V£ L
ot at ‘ d ! dr !

12.2)
where u =dx/dt is the optical flow in the image ;()lanc;
U = dX/dr 1s the motion field in the object space, and the
gradient operators are defined as

V.=(d/dx',d/ox" ).
Vy=(9/9X',0/9X".d/9X" )",
V,=(d/dp,.---.a/9p, ).
V,=(9d/dq,.--.0/9q, ) .

The first term in the right-hand side of Eq. (12.2) is the
local temporal change of the radiance. The second term is
the change induced by motion in a non-homogenous
radiance field. The third and fourth terms are related to the
changes of the physical and geometric parameters,
respectively. Eq. (12.2) is a generic form of the motion
equation of image intensity. However, the detailed
structure of Eq. (12.2) depends on the specific physical
process being studied. To determine the optical flow,
Horn and Schunck [46] suggested the well-known
brightness constraint equation 9//dr+ueV /=0 in

computer vision. In fact, the brightness constraint
equation is just an assumption that the image intensity
remains invariant along a stream of images. Generally
speaking. this assumption, which is not related to any
physical process. does not hold exactly. In the foliowing,
we give the motion equations of image intensity for three
typical cases. Similar results can be obtained for other
physical processes. Determining the optic flow in the
motion equation of image intensity is a constrained
variational problem.
Moving Lambertiun Surface

Consider a moving Lambertian surface illuminated by
an incident irradiance field E, (X ). Since the image

intensity is I{x)=c_  E, p, Ne«L_ the motion equation

of image intensity for a Lambertian surface is
al

—+ueV |

ot

dN '
=c, Pl (NoL WUV E, J+E,( .LS)]

dt

(12.3)
The first term in the right-hand side of Eq. (12.3) is the
change due to motion in the non-homogenous irradiance
field. The term ( dN/dt)e L, represents the rate of change

of the unit normal vector N of the surface projected in the
We

explore the connection of this term with the fundamental
geometric quantitics of the surface. The term ( dN/dt)e L,

illumination directional vector L, =(L ,,L,,L ).

is expanded as

dN ON
oL = oL +U(L eV N . 124
a o (L VN (124
The surface is described by a parametric equation
X=X(&LE), (12.5)

where &' and & are the parameters of the surface. The
term L oV N canbe expressed in & and &2

&P ON
X QET
According to the formulae of Weingarten [ 18]

LV . N=L

AB=12.a=123) (12.6)

oN oX
—_— =g , 12.7
agm‘i Bo aga ( )
we obtain
U'(L:'VXN)=_[/jgcmbljaaa§_Xu'U (|28)

where [, =L 057 /93X, g are the contravariant
metric tensor, and by arc the coefficients of the second

fundamental form of the surface.
Emitting Passive Scalar Transport

In a transport process of passive scalar such as
fluorescent dye, scattering particles, and temperature in
fluids, the radiance is assumed to be proportional to the
density or concentration w( X .t ) of the scalar

LX1)=c,w(X.1). (12.9)

where ¢, is a proportional constant. The density of the

scalar ( X,r) obeys the transport equation

dy _ Jdy )
—=—"+UeVy=D V- .
dt 9t V=0

where D, is the diffusion coefficient of the scalar.

(12.10)

Differentiating Eq. (12.1) and using Egs. (12.9) and
(12.10). we have

dif{ x.t) >

df =Cx\\(‘w Dv/V.-\‘ W .

Furthermore, because of I/(x.r)=c, c, w(X.1). Eq.

(12.11)

(12.11) becomes
di{x.t)
dr
The Laplace operator V3 can be expressed in the image

=D, Vil(x.1). (12.12)

coordinates x , i.e.,
5 d a°
Vi =h,—+#h

P e vy (1213



where h, and h, (a=12.y=12.p=123) are
defined as
o°x? ax’ ox®
hy:W and hW:WaXﬂ . (]2]4)

For a photogrammetrically calibrated camera, h, and h,,
are determined by the collinearity equations with the
known camera parameters and the image coordinates when
a surface constraint X' =F(X', X" ) is imposed (see
Section 4). Hence, the motion equation of image intensity
for a passive scalar transport process is

ol ol al d°1

5’—+ U, e = w[hr ax—7+ hy, X }
The optical flow field u® =dx®/dt can be recovered
from Eq. (12.15). In particular, using the orthographic

(12.15)

ol

“ ox“

(12.17)

projection x* = X “, we have
diffusion equation [47]
2]
| =L |.
ot ox“ox®
for transmittant passive scalar transport in a medium like
absorption and scattering, shown in Fig. 12. The radiance
—_— =N VL = —
where s is the path vector and S is the extinction
L=L,,exp(—j Bds). (12.19)
0

h,=0and h, =6 (12.16)
In this case. Eq. (12.15) is reduced to the standard
af
—+u
Transmittant Passive Scalar Transport
Here we derive the motion equation of image intensity
fluids. When a light ray transmits through a bulk of
passive scalar, the intensity of light is attenuated due to
reaching a camera through the scalar medium is given by
dL
L. (12.18)
ds
coefficient.  The solution of Eq. (12.18) gives the
transmitted radiance
Consider a bulk of the participating passive scalar confined
by two virtual boundary surfaces I, and I, as shown n

Fig. 12. We assume that the camera is far enough away
from the bulk of scalar such that the light path is almost
parallel to the optical axis, i.e.. s =—m; . In this case. it is
convenient to use the object space coordinates X in the
frame (m, . m, . m, ), defined as

—1

X =m,«(X-X_)

X =m,e(X-X_). (12.20)

—23

X =m,«(X-X_)
where the unit vectors m,, m,. and m;, are orthogonal,
Le. Mg n,, =J,,. Under the above conditions, the

transmitted radiance in Eq. (12.19) can be writien as
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— r — —
L(X,r)=L,,exp(—J‘ B(X.1)dX ] (12.21)
r

where the boundary surfaces are _)?j = F,(Yl Y .t) and

—)?j = FJ(YI,—)E:,I). The extinction coefficient is
proportional to the concentration y/( X.t) of the scalar,
Le.

BX.1)=€,w(X.1). (12.22)
where €, is an absorption coefficient. The relationship
between the image intensity and radiance is

I(x.t)=c, X1},

where x=(x'.x" ) is the
Combination of Egs. (12.21), (12.22) and (12.23) yields a
basic relation between the image intensity and the
concentration of the scalar

](x,f)=('\“‘ LU exp[ _gVJ-

(12.23)

VA

image  coordinates.

I _ —
wX.)dX
7

]. (12.24)

Differentiating Eq. (12.24) with respect to time, we

have
di(x.,t) J""‘dl// —i dr, dr,
—L=—f, l(x.t ——dX 4y —- —_—
dr o !l )[ r,odr W": dr W"' dr
(12.25)

Since w( X.t) obeys the transport equation Eq. (12.10),
the first term in the right-hand side is

I _ T 2 — I 2 _
J- de{:DW aawxdx}zDJ. _i!/f_a dX}
r dt r X *9X ¢ rnoxX oX
(a=123) (12.26)

The second equality in Eq. (12.26) can be easily proven.
From Eq. (12.20), we know the differential relation

/03X =m,,d/3X  and then
97 /OX "X =my,m,,3° /X X'
pore o (12.27)

=5,,0° /70X ax" =a° 7ax"axX "

Integration by parts yields

J, s
nAX 09X

(f=12.0=123)

¢
ax’ax’

—3

I —_
dX' = J wdX +BT.

7

(12.28)

. where the boundary terms B.T. are



Jow | e oyl ar
== =F Y= =

ox’|. ax” "ax’|,. ox

dy| or, ar, ay| or. or.
M —5 = = —5 =7

ox'l, ax" ax” ax'|, ax” ox

T, ¥r. ay| v

axtax” T ox’ax” axl. ax’l,
We consider that a bulk of the passive scalar is confined in
a finite domain and the distribution of w( X.r) rapidly
decrease to zero outside the domain. This represents a

typical case in many practical applications. Therefore,
when the virtual boundary surfaces /7, and I, are large

B.T.

+ ¥

enough such that w and its derivatives at the surfaces

approach to zero. i.e..

517 Yy

-0
— M ——/j
x|, ax’|.

Since the boundary terms in Egs. (12.25) and (12.28)
vanish, Eq. (12.25) becomes

X e Dy it ) jl'w dxX .

dr ax"ax" Jn

(f=12) (12.30)
Now we consider the transformation between the

image coordinates x =(x’',x")" and the object space

v, =0.y|, -0, —0.(12.29)

coordinates X =(X X .X ). The  collinearity
equations without the lens distortion are
N —
oxt ==X X (p=12) (12.31)

Thus, from Eq. (12.30). the Laplace operator can be
written as
a.’

g9° s
dxPox?’

ax’ax”
where A=—c/X s the scaling factor. Using Egs.
(12.24). (12.30) and (12.32), we obtain the motion

equation of image intensity for transmittance images of
passive scalar transport

(B=12) (1232

a—I+u —a!——l) A o°f o o
ar "ok Y oxfan’ ax? ax? |
(B=12) (12.33)

Note that a simple version of the motion equation of image
intensity for transmittance flow images was given by
Wilders et al. [48] based on the orthographic projection
and other assumptions.

13. Conclusions

We study a number of theoretical problems in
quantitative image-based measurements of geometric,
kinematic and dynamic properties of observed objects
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(specifically deformable bodies). From a unified
viewpoint, we discuss different formulations of the
perspective projection transformation and their geometrical
connection. These cquivalent formulations of the
perspective projection transformation are selectively used
in this paper to study different geometric problems,
depending on convenience of the formulation applied to a
specific problem. The perspective developable conical
surface containing a 3D curve is reconstructed from known
image measurements of the curve. The developable
conical surfaces can be used to reconstruct a 3D curve and
a surface without solving the ambiguous correspondence
problem in stereovision. Furthermore, the general
methodology is proposed for reconstructing the motion
field of a 3D curve from a time sequence of images.

The perspective projection transformation under a
surface constraint allows one-to-one mapping between the
surface in the object space and the image plane. We
explore the connection of the geometric structures and
motion fields between the image plane and the surface in
the object space.  These issues are important in
reconstructing the complex motion fields on a surface such
as skin friction field on an aerodynamic body and passive
scalar motion field illuminated by a laser sheet. Then, we
consider the general point correspondence problem in
multiple images. Longuet-Higgins relation for the point
correspondence problem is generalized by taking the lens
distortion effect into account. Generally, establishing the
point correspondence requires at least four cameras or
images. The concept of the composite image space is
introduced. After the relationship between the composite
image space and the object space is established under the
coplanar condition, the perspective invariants of a 3D
curve are constructed. These invariants allow us to
directly know the geometric features of the curve such as
torsion and curvature from images without calibrating the
cameras.

In the radiometric aspects, we discuss the relationship
between the image intensity and the radiance received by a
camera as well as typical radiation processes such as
surface reflection, radiative energy transport through the
participating mediums and luminescence. The motion
equations of image intensity are derived for moving
Lambertian surface, emitting passive scalar transport and
transmittant passive scalar transport. These equations
provide a rational foundation for recovering the optic
flows and motion fields of deformable bodies (e.g. fluids)
from a time sequence of images of continuous patterns.
Future research will be focused on the development of the
effective numerical techniques and algorithms and their
implementation in various simulations and experiments.
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Figure 1. Imaging geometry and coordinate systems.

Figure 2. Relationship between the vectors m, (i=123)
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